

POA MATERIALI AVANZATI PER L'ENERGIA PROGETTO IEMAP - Piattaforma Italiana Accelerata per i Materiali per l'Energia

D4.20 - Database con le caratteristiche e performance dei materiali foto-ricaricabili da utilizzare nei processi di machine learning della piattaforma

L. Zani, A. Mordini, A. Dessì, D. Franchi, A. Sanson, N. Sangiorgi, A. Sangiorgi, M. Striccoli, C. N. Dibenedetto, M. Dell'Edera, M. Giancaspro, F. De Giorgio, G. Ruani

Report MI21-24/46

D4.20 - Database con le caratteristiche e performance dei materiali foto-ricaricabili da utilizzare nei processi di machine learning della piattaforma

L. Zani (ICCOM), A. Mordini (ICCOM), A. Dessì (ICCOM), D. Franchi (ICCOM), A. Sanson (ISSMC), N. Sangiorgi (ISSMC), A. Sangiorgi (ISSMC), M. Striccoli (IPCF), C. N. Dibenedetto (IPCF), M. Dell'Edera (IPCF), M. Giancaspro (IPCF), F. De Giorgio (ISMN), G. Ruani (ISMN)

Settembre 2022

Report IEMAP D4.20

Ministero dell'Ambiente e della Sicurezza Energetica - ENEA Mission Innovation 2021-2024 - II annualità Progetto: Italian Energy Materials Acceleration Platform - IEMAP Work package: WP4 – Materiali per Fotovoltaico Linea di attività: LA4.10 - Analisi e screening di materiali per elettrodi e trasportatori di carica per dispositivi integrati fotovoltaicoaccumulo a 2 terminali Responsabile del Progetto: Dott. Massimo Celino (ENEA) Responsabile della LA: Dott. Alessandro Mordini (CNR-ICCOM)

Indice

1.	Colorante AD418	4
2.	Colorante TTZ5	9
3.	Colorante TTZ9	14
4.	Colorante BTD-DTP1	19
5.	Colorante BTD-DTP2	25
6.	Colorante BTD-DTP3	31
7.	NiO	37
7	1 NiO colloidale	37
7	.2 NiO Sol-Gel	39
8.	SnO ₂	41
8	.1 SnO ₂ sintesi idrotermale	41
8	.2 SnO ₂ sintesi per precipitazione	43
8	.3 SnO ₂ sintesi per riflusso	45
9.	TiO ₂	47
10.	WO ₃	49
11.	Composito TiO ₂ /WO ₃	53
12.	MnO ₂	55
13.	Fotoelettrodo di TiO ₂ sensibilizzato con il colorante N3	63
14.	Fotoelettrodo di TiO ₂ sensibilizzato con il colorante AD418	67
15.	Fotoelettrodo di TiO ₂ sensibilizzato con il colorante TTZ5	71
16.	Fotoelettrodo di TiO ₂ sensibilizzato con il colorante TTZ9	75
17.	Fotoelettrodo di TiO ₂ sensibilizzato con il colorante BTD-DTP1	79
18.	Fotoelettrodo di TiO ₂ sensibilizzato con il colorante BTD-DTP2	83
19.	Fotoelettrodo di TiO ₂ sensibilizzato con il colorante BTD-DTP3	87
20.	Fotoelettrodo ricaricabile con TiO ₂ /N3/GO	91
21.	Fotoelettrodo ricaricabile con TiO ₂ /N3/PEDOT	95
22.	Fotoelettrodo ricaricabile con TiO ₂ /AD418/PEDOT	99
23.	Fotoelettrodo ricaricabile con TiO ₂ / BTD-DTP2 /PEDOT	.103
24.	Fotoelettrodo di WO ₃	.107

1 Colorante AD418

SUMMARY					
¹ H-NMR	×	XRD		Abs. spectra	\times
¹³ C-NMR	×	TG		Abs. coeff.	\times
other nuclei		DTA		Ems. spectra	\times
FT-IR	×	Redox	×	QY	
MS	×	Mol. Model.		LT	
H, C, N					

٦

SYNTHESIS								
Reagents	MW	d (g/mL)	mmol / eq	m (mg)	V (mL)			
8-(5-(4-(Diphenylamino)phenyl)thiophen-2-yl)-3,3-	649.90	-	0.115 / 1.0	75	-			
dipentyl-3,4-dihydro-2 <i>H</i> -thieno[3,4- <i>b</i>][1,4]								
dioxepine-6-carbaldehyde								
Cyanoacetic acid	85.06	-	1.15 / 10	98	-			
Ammonium acetate	77.08	-	0.46 / 4.0	35	-			
Toluene	92.14	0.867	-	-	2.0			
Acetic acid	60.05	1.05	-	-	2.0			
Procedure								
Under inert atmosphere, the aldehyde was dissolv	Under inert atmosphere, the aldehyde was dissolved in toluene and glacial acetic acid (1:1 v/v),							

then cyanoacetic acid and ammonium acetate were added. The resulting mixture was stirred at 100 °C for 4 hours, then cooled down to room temperature. After dilution with

dichloromethane, the organic phase was washed twice with $HCI_{(aq.)}$ 0.3 M and the solvent evaporated.

Purification

The resulting solid was purified by washing with several portions of n-pentane and methanol, and dried under vacuum.

Yield: 92% (76 mg, 0.106 mmol)

Biblio

ChemSusChem **2018**, *11*, 793 – 805

¹H NMR (THF-d₈, 400 MHz)

δ (ppm) = 8.33 (s, 1H), 7.55 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 3.3 Hz, 1H), 7.32 (d, *J* = 3.5 Hz, 1H), 7.28–7.24 (m, 4H), 7.09 (d, *J* = 7.8 Hz, 4H), 7.06–7.00 (m, 4H), 4.17 (s, 2H), 4.12 (s, 2H), 1.52–1.46 (m, 4H), 1.42–1.25 (m, 12H), 0.92 (t, *J* = 5.9 Hz, 6H).

ELECTROCHEMISTRY

Cyclic Voltammetry (Working electrode: glassy carbon; counter-electrode: platinum; reference electrode: aqueous Ag/AgCl (sat. KCl); supporting electrolyte: C₁₆H₃₆NPF₆ 0.1 M in THF; ferrocene as an external standard)

Photo-electrochemical parameters

- $E_{S+/S} = + 1.05 \text{ V}$ vs. NHE (Values obtained using ferrocene as an external standard and assuming a reduction potential of +0.62 V for the Fc⁺/Fc couple vs. NHE)
- $E_{0-0} = +2.07 \text{ eV}$ (Calculated from the intersection of the absorption and emission spectra in DCM solution)
- $E_{S+/S^*} = -1.02 \text{ V vs.}$ NHE (Calculated using the equation $E_{S+/S^*} = E_{S+/S} E_{0-0}$)

2 Colorante TTZ5

SUMMARY					
¹ H-NMR	×	XRD		Abs. spectra	×
¹³ C-NMR	č i	TG		Abs. coeff.	×
other nuclei		DTA		Ems. spectra	
FT-IR	<u>ک</u>	Redox	\boxtimes	QY	
MS	\boxtimes	Mol. Model.		LT	
H, C, N	Ľ				

SYNTHESIS					
Reagents	MW	d	mmol /	m	V
		(g/mL)	eq	(mg)	(mL)
5-(8-(5-(8-(4-(bis(4-(hexylthio)phenyl)amino)	1316.9	-	0.06 / 1.0	84	-
phenyl)-3,3-dipentyl-3,4-dihydro-2 <i>H</i> -thieno[3,4-	9				
<i>b</i>][1,4]dioxepin-6-yl)thiazolo[5,4- <i>d</i>]thiazol-2-yl)-					
3,3-dipentyl-3,4-dihydro-2 <i>H</i> -thieno[3,4- <i>b</i>][1,4]					
dioxepin-6-yl)thiophene-2-carbaldehyde					
Cyanoacetic acid	85.06	-	0.64 / 10	54	-
Ammonium acetate	77.08	-	0.25 / 4.0	20	-
Toluene	92.14	0.867	-	-	3.0
Acetic acid	60.05	1.05	-	-	3.0

Procedure

Under inert atmosphere, the aldehyde was dissolved in toluene and glacial acetic acid (1:1 v/v), then cyanoacetic acid and ammonium acetate were added. The resulting mixture was stirred at 110 °C for 3 hours, then cooled down to room temperature. After dilution with additional toluene, the organic phase was washed twice with $HCl_{(aq.)}$ 0.3 M and the solvent evaporated.

Purification

The resulting solid was purified by washing with several portions of n-pentane, ethyl acetate, and methanol, and dried under vacuum.

Yield: 97% (85 mg, 0.06 mmol)

Biblio

Chem. Commun., 2014, 50, 13952.

¹H NMR (THF-d₈, 400 MHz)

δ (ppm) = 8.30 (s, 1H), 7.83 (d, J = 4.0 Hz, 1H), 7.64 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 4.0 Hz, 1H), 7.26 (d, J = 8.5 Hz, 4H), 7.00–7.05 (m, 6H), 4.28 (s, 2H), 4.24 (s, 2H), 4.22 (s, 2H), 4.06 (s, 2H), 2.90 (t, J = 7.3 Hz, 4H), 1.62–1.68 (m, 4H), 1.53–1.59 (m, 8H), 1.27–1.51 (m, 36H), 0.88–0.95 (m, 18H).

¹³**C-NMR** (THF-d₈, 100 MHz)

$$\begin{split} &\delta \text{ (ppm)} = 164.0, 160.1, 158.2, 151.7, 151.1, 150.3, 149.1, 148.0, 147.7, 146.0, 145.9, 144.0, 138.2, \\ &136.2, 132.3, 131.3, 128.2, 127.4, 125.7, 125.0, 124.9, 123.5, 117.9, 117.7, 116.7, 114.5, 99.2, \\ &78.9, 78.8, 78.5, 78.3, 67.8, 44.7, 44.5, 34.6, 33.50, 33.49, 32.8, 32.7, 32.2, 30.0, 29.2, 23.27, 23.26, \\ &14.3, 14.2. \end{split}$$

Found: C, 65.69; H, 6.94; N, 4.00.

ELECTROCHEMISTRY

Cyclic Voltammetry (Working electrode: glassy carbon; counter-electrode: platinum; reference electrode: aqueous Ag/AgCl NaCl (3M); supporting electrolyte: C₁₆H₃₆NPF₆ 0.1 M in DCM; ferrocene as an external standard)

Photo-electrochemical parameters

- E_{S+/S} = + 0.91 V *vs.* NHE
- $E_{0-0} = +2.16 \text{ eV}$ (Calculated from the intersection of the absorption and emission spectra in THF solution)
- $E_{S+/S^*} = -1.25 \text{ V vs.}$ NHE (Calculated using the equation $E_{S+/S^*} = E_{S+/S} E_{0-0}$)

3 Colorante TTZ9

SUMMARY					
¹ H-NMR	\mathbf{X}	XRD		Abs. spectra	X
¹³ C-NMR	\mathbf{X}	TG		Abs. coeff.	\mathbf{X}
other nuclei		DTA		Ems. spectra	
FT-IR	\mathbf{X}	Redox	×	QY	
MS	\mathbf{X}	Mol. Model.		LT	
H <i>,</i> C, N					

SYNTHESIS					
Reagents	MW	d	mmol / eq	m (mg)	V (mL)
		(g/mL)			
5-(7-(8-(5-(8-(4-(bis(4-(hexylthio)phenyl)amino)	1451.15	-	0.067 / 1.0	97	-
phenyl)-3,3-dipentyl-3,4-dihydro-2 <i>H</i> -thieno[3,4-					
<i>b</i>][1,4]dioxepin-6-yl)thiazolo[5,4- <i>d</i>]thiazol-2-yl)-					
3,3-dipentyl-3,4-dihydro-2 <i>H</i> -thieno[3,4- <i>b</i>][1,4]					
dioxepin-6-yl)benzo[c][1,2,5]thiadiazol-4-yl)					
thiophene-2-carbaldehyde					
Cyanoacetic acid	85.06	-	0.668 / 10	57	-
Ammonium acetate	77.08	-	0.267 / 4.0	21	-
Toluene	92.14	0.867	-	-	3.0
Acetic acid	60.05	1.05	-	-	1.5

Procedure

Under inert atmosphere, the aldehyde was dissolved in toluene and glacial acetic acid (2:1 v/v), then cyanoacetic acid and ammonium acetate were added. The resulting mixture was stirred at 110 °C for 3 hours, then cooled down to room temperature. After dilution with additional toluene, the organic phase was washed twice with HCl_(aq.) 0.3 M and the solvent evaporated.

Purification

The resulting solid was purified by washing with several portions of n-pentane, ethyl acetate, and methanol, and dried under vacuum.

Yield: 85% (86 mg, 0.057 mmol)

Biblio

Sustainable Energy Fuels, 2020, 4, 2309-2321

¹H NMR (THF-d₈, 400 MHz)

δ (ppm) = = 8.49 (d, J = 7.6 Hz, 1H), 8.21–8.29 (m, 2H), 7.98 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 4.0 Hz, 1H), 7.61 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 8.7 Hz, 4H), 7.04 (d, J = 8.7 Hz, 4H), 6.99 (d, J = 8.7 Hz, 2H), 4.29 (s, 2H), 4.27 (s, 2H), 4.23 (s, 2H), 4.05 (s, 2H), 2.91 (t, J = 7.4 Hz, 4H), 1.60–1.70 (m, 8H), 1.26–1.58 (m, 40H), 0.93–1.02 (m, 12H), 0.91 (t, J = 6.9 Hz, 6H).

¹³C-NMR (THF-d₈, 100 MHz)

 δ (ppm) = 164.1, 159.9, 159.2, 153.4, 152.9, 151.8, 151.5, 150.4, 149.8, 149.3, 149.1, 147.9, 146.4, 146.3, 139.3, 137.6, 132.6, 131.7, 129.2, 128.5, 127.9, 127.7, 127.2, 126.1, 125.1, 124.4, 123.8, 121.0, 120.2, 116.9, 115.1, 100.3, 78.8, 78.7, 78.6, 44.9, 44.8, 35.1, 34.0, 33.9, 33.3, 33.2, 32.5, 30.4, 29.6, 23.7, 23.6, 14.69, 14.65, 14.57.

Report IEMAP D4.20

ELECTROCHEMISTRY Cyclic Voltammetry (Working electrode: glassy carbon; counter-electrode: platinum; reference electrode: aqueous Ag/AgCl (sat. KCl); supporting electrolyte: C₁₆H₃₆NPF₆ 0.1 M in CHCl₃; ferrocene as an external standard) 1,0x10⁻⁵ Scan rate: 50 mV s⁻¹ 8,0x10^{-€} Scan rate: 100 mV s⁻¹ Scan rate: 200 mV s⁻¹ 6,0x10⁻⁶ 4,0x10⁻⁶ Current (A) 2,0x10⁻⁶ 0,0 -2,0x10⁻⁶ -4,0x10⁻⁶ -6,0x10⁻⁶ -8,0x10⁻⁶ 0,2 0,6 0,8 -0,2 0,0 0,4 1,0 1,2 1,4 -0,4 Potential (V) **Photo-electrochemical parameters** $E_{S+/S} = + 0.87 V vs. NHE$ •

- E₀₋₀ = + 1.98 eV (Calculated from the data in THF solution, based on the corresponding Tauc plots)
- $E_{S+/S^*} = -1.11 \text{ V vs.}$ NHE (Calculated using the equation $E_{S+/S^*} = E_{S+/S} E_{0-0}$)

4 Colorante BTD-DTP1

SUMMARY					
¹ H-NMR	X	XRD		Abs. spectra	\mathbf{X}
¹³ C-NMR	×	TG		Abs. coeff.	X
other nuclei		DTA		Ems. spectra	\mathbf{X}
FT-IR	×	Redox	×	QY	
MS	X	Mol. Model.		LT	
H, C, N					

SYNTHESIS					
Reagents	MW	d (g/mL)	mmol / eq	m (g)	V (mL)
6-(7-(4-(diphenylamino)phenyl)benzo[c][1,2,5]	668.90	-	2.24 / 1.0	1.5	-
thiadiazol-4-yl)-4-hexyl-4H-dithieno[3,2-b:2',3'-d]					
pyrrole-2-carbaldehyde					
Cyanoacetic acid	85.06	-	11.2 / 5.0	0.954	-
Ammonium acetate	77.08	-	3.36 / 1.5	0.259	-
Toluene	92.14	0.867	-	-	20
Acetic acid	60.05	1.05	-	-	10
Procedure					

Under inert atmosphere, the aldehyde was dissolved in toluene and glacial acetic acid (2:1 v/v), then cyanoacetic acid and ammonium acetate were added. The resulting mixture was stirred at 110 °C for 4 hours, then cooled down to room temperature. After dilution with additional

toluene, the organic phase was washed twice with HCl_(aq.) 0.3 M and the solvent evaporated. **Purification**

The resulting solid was purified by washing with several portions of n-pentane, ethyl acetate, and methanol, and dried under vacuum.

Yield: 85% (1.41 g, 1.92 mmol)

Biblio

Sustainable Energy Fuels, **2021**, 5, 1171

¹H NMR (THF-d₈, 400 MHz)

δ (ppm) = 8.47 (s, 1H), 8.34 (s, 1H), 8.08 (d, *J* = 7.3 Hz, 1H), 8.00 (d, *J* = 8.8 Hz, 2H), 7.92 (s, 1H), 7.83 (d, *J* = 7.3 Hz, 1H), 7.24–7.34 (m, 4H), 7.12–7.20 (m, 6H), 7.00–7.10 (m, 2H), 4.41 (t, *J* = 6.6 Hz, 2H), 1.94–2.04 (m, 2H), 1.26–1.44 (m, 6H), 0.83–0.94 (m, 3H).

HRMS (ESI) for $C_{42}H_{33}N_5O_2S_3$ [M]⁺: calcd. 735.17909, found: 735.17888 *m/z*.

ELECTROCHEMISTRY

- $E_{S+/S} = + 1.00 \text{ V}$ vs. NHE (Values obtained using ferrocene as an external standard and assuming a reduction potential of +0.63 V for the Fc⁺/Fc couple vs. NHE)
- $E_{0-0} = +2.09 \text{ eV}$ (Calculated from the intersection of the absorption and emission spectra in THF solution)
- $E_{S+/S^*} = -1.09 \text{ V vs.}$ NHE (Calculated using the equation $E_{S+/S^*} = E_{S+/S} E_{0-0}$)

5 Colorante BTD-DTP2

SUMMARY					
¹ H-NMR	\checkmark	XRD		Abs. spectra	\checkmark
¹³ C-NMR	\checkmark	TG		Abs. coeff.	\checkmark
other nuclei		DTA		Ems. spectra	\checkmark
FT-IR	\checkmark	Redox	\checkmark	QY	
MS	\checkmark	Mol. Model.		LT	
H, C, N					

SYNTHESIS					
Reagents	MW	d	mmol /	m	V
		(g/mL)	eq	(mg)	(mL)
4-(2',6'-bis(octyloxy)-[1,1'-biphenyl]-4-yl)-6-(7-(4-	993.3	-	0.121/	120	-
(diphenylamino)phenyl)benzo[c][1,2,5]	5		1.0		
thiadiazol-4-yl)-4H-dithieno[3,2-b:2',3'-d]pyrrole					
-2-carbaldehyde					
Cyanoacetic acid	85.06	-	0.604 /	51	-
			5.0		
Ammonium acetate	77.08	-	0.181/	14	-
			1.5		
Toluene	92.14	0.867	-	-	3.0
Acetic acid	60.05	1.05	-	-	1.5

Procedure

Under inert atmosphere, the aldehyde was dissolved in toluene and glacial acetic acid (2:1 v/v), then cyanoacetic acid and ammonium acetate were added. The resulting mixture was stirred at 110 °C for 4 hours, then cooled down to room temperature. After dilution with additional toluene, the organic phase was washed twice with $HCl_{(aq.)}$ 0.3 M and the solvent evaporated.

Purification

The resulting solid was purified by washing with several portions of n-pentane, ethyl acetate, and methanol, and dried under vacuum.

Yield: 98% (126 mg, 0.119 mmol)

Biblio

Sustainable Energy Fuels, **2021**, 5, 1171

¹H NMR (THF-d₈, 400 MHz)

δ (ppm) = 8.53 (s, 1H), 8.38 (s, 1H), 8.08 (d, *J* = 7.6 Hz, 1H), 8.00 (s, 1H), 7.95 (d, *J* = 8.6 Hz, 2H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.20–7.32 (m, 5H), 7.08– 7.19 (m, 6H), 7.04 (t, *J* = 8.4 Hz, 2H), 6.71 (d, *J* = 8.4 Hz, 2H), 3.95 (t, *J* = 6.4 Hz, 4H), 1.67 (q, *J* = 6.8 Hz, 4H), 1.32–1.42 (m, 4H), 1.10–1.31 (m, 16H), 0.69–0.80 (m, 6H).

¹³C-NMR (THF-d₈, 100 MHz)

$$\begin{split} &\delta \text{ (ppm)} = 164.4, 158.0, 154.6, 153.3, 149.2, 148.9, 148.3, 147.6, 144.8, 143.7, 137.5, 135.6, \\ &134.2, 133.8, 133.3, 131.3, 130.7, 130.0, 129.5, 127.5, 126.6, 126.5, 126.3, 125.5, 124.0, 123.2, \\ &122.4, 122.0, 119.5, 118.1, 117.1, 113.3, 105.9, 97.0, 69.1, 32.6, 30.1, 30.0, 29.9, 26.8, 23.3, \\ &14.2. \end{split}$$

HRMS (ESI) for C₆₄H₆₁N₅O₄S₃ [M]⁺: calcd. 1059.38802, found: 1059.38610 *m/z*.

ELECTROCHEMISTRY

Cyclic Voltammetry (Working electrode: glassy carbon; counter-electrode: platinum; reference electrode: Ag/AgNO₃ in MeCN; supporting electrolyte: $C_{16}H_{36}NPF_6$ 0.1 M in THF; ferrocene as an external standard)

- $E_{S+/S} = + 1.12 \text{ V vs.}$ NHE (Values obtained using ferrocene as an external standard and assuming a reduction potential of +0.63 V for the Fc⁺/Fc couple vs. NHE)
- $E_{0-0} = +2.11 \text{ eV}$ (Calculated from the intersection of the absorption and emission spectra in THF solution)
- $E_{S+/S^*} = -0.99 \text{ V vs.}$ NHE (Calculated using the equation $E_{S+/S^*} = E_{S+/S} E_{0-0}$)

6 Colorante BTD-DTP3

SUMMARY					
¹ H-NMR		XRD		Abs. spectra	×
¹³ C-NMR	\boxtimes	TG		Abs. coeff.	
other nuclei		DTA		Ems. spectra	
FT-IR	\bowtie	Redox	Ň	QY	
MS	\bowtie	Mol. Model.		LT	
H, C, N					

SYNTHESIS					
Reagents	MW	d	mmol /	m	V
		(g/mL)	eq	(mg)	(mL)
4-(4-(2',6'-bis(octyloxy)-[1,1'-biphenyl]-4-yl)-6-	1069.4	-	0.047 /	50	-
(7-(4-(diphenylamino)phenyl)benzo[c][1,2,5]	5		1.0		
thiadiazol-4-yl)-4H-dithieno[3,2-b:2',3'-d]					
pyrrol-2-yl)benzaldehyde					
Cyanoacetic acid	85.06	-	0.234 /	20	-
			5.0		
Ammonium acetate	77.08	-	0.070 /	5.4	-
			1.5		
Toluene	92.14	0.867	-	-	2.0
Acetic acid	60.05	1.05	-	-	1.0

Procedure

Under inert atmosphere, the aldehyde was dissolved in toluene and glacial acetic acid (2:1 v/v), then cyanoacetic acid and ammonium acetate were added. The resulting mixture was stirred at 110 °C for 4 hours, then cooled down to room temperature. After dilution with additional toluene, the organic phase was washed twice with $HCl_{(aq.)}$ 0.3 M and the solvent evaporated.

Purification

The resulting solid was purified by washing with several portions of n-pentane, ethyl acetate, and methanol, and dried under vacuum.

Yield: 77% (41 mg, 0.036 mmol)

Biblio

Sustainable Energy Fuels, **2021**, 5, 1171

¹**H NMR** (THF-d₈, 400 MHz) δ (ppm) = 8.55 (s, 1H); 8.22 (s, 1H); 8.09 (d, *J* = 8.4 Hz, 2H); 8.04 (d, *J* = 7.6 Hz, 1H); 7.97 (d, *J* = 8.4 Hz, 2H); 7.83–7.91 (m, 3H); 7.74–7.82 (m, 3H); 7.65 (d, *J* = 8.4 Hz, 2H); 7.22–7.32 (m, 5H); 7.09–7.19 (m, 6H); 7.00–7.08 (m, 2H); 6.71 (d, *J* = 8.4 Hz, 2H); 3.92 (t, *J* = 6.2 Hz, 4H); 1.63–1.72 (m, 4H); 1.33–1.44 (m, 4H); 1.12–1.32 (m, 16H); 0.67–0.78 (m, 6H).

¹³C-NMR (THF-d₈, 100 MHz)

 δ (ppm) = 163.8, 158.0, 154.7, 153.4, 153.3, 148.8, 148.4, 146.2, 146.0, 141.9, 140.5, 139.8, 138.0, 133.9, 133.7, 132.5, 132.4, 131.7, 131.3, 130.7, 130.0, 129.5, 127.7, 127.2, 125.8, 125.6, 125.5, 123.9, 123.4, 122.1, 119.7, 118.8, 118.5, 116.4, 113.7, 111.2, 105.9, 103.2, 69.1, 32.6, 30.1, 30.0, 29.9, 26.8, 23.3, 14.2.

ELECTROCHEMISTRY

Cyclic Voltammetry (Working electrode: glassy carbon; counter-electrode: platinum; reference electrode: Ag/AgNO₃ in MeCN; supporting electrolyte: C₁₆H₃₆NPF₆ 0.1 M in THF; ferrocene as an external standard) BTD-DTP3 6,0x10⁻⁶ 4,0x10⁻⁶ Current (A) 2,0x10⁻⁶ 0,0 -2,0x10⁻⁶ -4,0x10⁻⁶ -0,4 -0,6 -0,2 0,0 0,2 0,4 0,6 . 0,8 1,0 Potential (V) vs. Fc⁺/Fc **Photo-electrochemical parameters**

- $E_{S+/S} = + 0.96 V vs.$ NHE (Values obtained using ferrocene as an external standard and assuming a reduction potential of +0.63 V for the Fc⁺/Fc couple vs. NHE)
- $E_{0-0} = +2.08 \text{ eV}$ (Calculated from the intersection of the absorption and emission spectra in THF solution)
- $E_{S+/S^*} = -1.12 \text{ V vs.}$ NHE (Calculated using the equation $E_{S+/S^*} = E_{S+/S} E_{0-0}$)

7 NiO

7.1 NiO Colloidale

Colloidal NiO Nanoparticles				
Reagents	MW (g/mol)	М	V(mL)	
Nickel(II)	256,91	1 mmol		
acetylacetonate				
(C ₁₀ H ₁₄ NiO ₄)				
borane-triethylamine	115.02	1.4	0.350	
complex [(C ₂ H ₅) ₃ N·BH ₃]		mmol		
Volume obtained for react	tions batch:			
colloidal dispersion 0.3 M				
Ni(II) acetylacetonate (C ₁₀	$H_{14}NiO_4$) (1 mmol) was dissolved in 15 ml of oleylami	ne (C ₁₈ H ₃₇	N) with	
1 mmol of oleic acid (C ₁₈ H	$_{34}O_2$). The solution was heated to 110 °C for more that	an 30 min,	stirring	
vigorously to degas the di	ssolved oxygen and evaporate moisture, and then co	poled and	kept at	
90 °C. Next, 2.4 mmol o	of borane-triethylamine complex $[(C_2H_5)_3N\cdot BH_3]$ mix	ked with 2	2 ml of	
oleylamine was rapidly inj	ected into the solution. The resulting solution was ke	pt at 90 °C	for 1 h	
under vigorous stirring and	d then cooled to room temperature. Ethanol (C $_2H_6O$) (30 ml) wa	s added	
to the solution, and the m	ixture was centrifuged at 10000 for 15 min to collect	NiO NPs		
Good dispersive solvents				
• chloroform				
dicholoromethane				
hexane				
Characterization				
🝾 XRD				
👌 Abs spectra				

Biblio

Usik Kwon et al. Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells. *Sci Rep* 6, 30759 (**2016**).

7.2 NiO Sol-Gel

Sol Gel NiO Nanoparticles					
Reagents	MW		M(mol/L)	V(mL)	
Ni(NO ₃) ₂ -6H ₂ O	290.79		0.25	50	
NaOH	39,997		10 M		
Grams for reactions batch					
2.5 g					
Ni(NO ₃) ₂ -6H ₂ O (0.25 mol), w	as dissolved in 50 mL	of deionized H ₂ O to obtain a dark gr	een solutior	n. Next,	
the pH of the solution was	adjusted to 10 by add	ling 10 M NaOH aqueous solution of	drop by drop	o. After	
stirring for 1 h, the green co	olloidal precipitate wa	as collected by centrifugation at 600	00 rpm for 1	L0 min,	
washed twice with deionize	d water and dried at 8	30 °C for 6 h. The green solid obtair	ned was calc	ined at	
270 °C for 2 h to obtain a bla	ck powder.				
Good dispersive solvent					
Isopropanol					
Butanol					
Characterization					
XRD					
Abs spectra					
Diffuse reflectance s	Diffuse reflectance spectroscopy				
👉 UPS					
o SEM					
💊 TEM					
 Specific surface area 	(BET)				

UPS data: work function = 4.6 eV, VBM (vs vacuum) = -5.33 eV

Biblio:

Ryuji Kaneko et al., Cobalt-doped nickel oxide nanoparticles as efficient hole transport materials for low-temperature processed perovskite solar cells, Solar Energy, 181(**2019**) Pages 243-250,

8 SnO₂

8.1 SnO₂ sintesi idrotermale

SnO ₂ Nanoparticles by hydrothermal method							
Reagents	ents MW M(mol/L) V(mL)						
SnCl ₄ *5H ₂ O	350.60		0.09	15			
NaOH	39.99		рН 6	1			
NH₄OH	35.04		рН 6	0.2			
Grams for reactions batch	I		1	1			
2 g							
A SnCl ₄ ·5H ₂ O solution (0.09	M) was prepared by	y dissolving SnCl₄·5H₂O in a ⊦	I_2O and ethar	nol (EtOH)			
mixture 3:1 (volume ratio) at pH 6 using eithe	er NaOH or NH4OH as base	to catalyse t	he sol-gel			
reaction, and then was trai	nsferred to a Teflon-	lined stainless autoclave (15	mL) and kept	at 180 °C			
for 6 h. The products were	e collected by centri	fugation at 10 000 rpm and	l washed wit	h ethanol			
and deionized water. After	oven-drying, the hy	drothermal SnO ₂ NCs can be	e obtained.				
Good dispersive solvents							
 Isopropanol 							
Butanol							
Characterization							
XRD							
Diffuse reflectance spectroscopy							
TTIR							
💊 TEM							
Specific surface area (BET)							

Panel A: XRD diffraction patterns of the SnO₂ NCs synthesized using NaOH with reference pattern for tetragonal SnO₂ #00-071-0652, Panel B: Tauc diagrams measured from the spectra in diffuse reflectance, Panel C: ATR-FTIR spectra in the 1500-400 cm⁻¹ spectral region

Panel A,B: TEM micrographs (Scale bar 20 nm) of the SnO₂ NCs synthesized using NaOH (Panel A) and NH₄OH (Panel B)

h_SnO₂/NaOH Eg: 4.41 eV UPS Data: Work Function=7.0 eV; VBM (Vacuum) = -9.7eV

h_SnO₂/NH₄OH **Eg:** 3.50 eV

Sample	SSA (m	1²/g)	Тс	tal pore volume at 0.9	95 p/p º					
SnO ₂	81			0.6711						
Biblio										
Zhu Zonglong,	et al., En	hance	ed Efficier	ncy and Stability of Inver	ted Pero	vskite	Solar Cel	s Using	Highl	ly Crystalline
SnO ₂ Nanocry	stals as	the	Robust	Electron-Transporting	Layer,	Adv.	Mater.	2016,	28,	6478-6484,
https://doi.or	g/10.1002	2/adm	na.201600	<u>)619</u>						

8.2 SnO₂ sintesi per precipitazione

SnO ₂ Nanoparticles by precipitation approach					
Reagents	MW			M(mol/L)	V(mL)
SnCl ₄ *5H ₂ O	350.60			0.09	22
NaOH	39.99			рН 9	1
NH₄OH	35.04			рН 9	0.9
Grams for reactions b	atch				
2 g					
For the sol-precipitat	ion synthesis, a	SnCl₄·5H₂O soluti	on (0.09 M) in	a H ₂ O/EtOH	mixture 3:1
(volume ratio) was pr	epared and the	pH was adjusted t	o 9 by adding e	ither NaOH o	r NH₄OH as
base to catalyse the	sol-gel reaction.	Then, the solution	on was heated	from T _{room} to	80°C in 30
minutes in a silicon of	il bath and stirred	d for 6 h. The proc	lucts were colle	cted by centr	ifugation at
10 000 rpm and wash	ed with ethanol	and deionized wa	ter. After oven-	drying, the Sr	nO2 NCs can
be obtained.					
Good dispersive solve	ents				
 Isopropanol 					
 Butanol 					
Characterization					
XRD	XRD				
Diffuse reflectance spectroscopy					
FTIR	FTIR				
🖢 TEM					
Specific surface area (BET)					

Panel A: XRD diffraction patterns of the SnO₂ NCs synthesized using NH₄OH with reference pattern for tetragonal SnO₂ #00-071-0652, Panel B: Tauc diagrams measured from the spectra in diffuse reflectance, Panel C: ATR-FTIR spectra in the 1500-400 cm⁻¹spectral region

Panel A,B: TEM micrographs (Scale bar 20 nm) of the SnO₂ NCs synthesized using NaOH (Panel A) and NH₄OH (Panel B)

p_SnO₂/NaOH Eg: 3.98 eV

p_SnO₂/NH₄OH **Eg:** 3.67 eV UPS Data: **Work Function=6.9eV; VBM (Vacuum)=-9.5eV**

Sample	SSA	Total pore volume at
	(m²/g)	0.995 p/p ⁰
p_SnO₂/NaOH	104	0.065
p_SnO₂/NH₄OH	222	0.391

Biblio

A. Bouaine, et al., Structural, Optical, and Magnetic Properties of Co-doped SnO₂ Powders Synthesized by the Coprecipitation Technique, J. Phys. Chem. C 2007, 111, 7, 2924–2928, <u>https://doi.org/10.1021/jp066897p</u>

8.3 SnO₂ sintesi per riflusso

Colloidal SnO₂ Nanoparticles by reflux process

Reagents	MW (g/mol)	M(mol/L)	V(mL)
SnCl ₂ *2H ₂ O	225.64	0.1	25
SnO ₂ colloidal nanocrystals	(NCs) have been synthesized by reflux pro	cess. SnCl ₂ ·2H ₂ () solution
(0.1 M) was prepared by di	ssolving $SnCl_2 \cdot 2H_2O$ in a solvent mixture bas	ed on butanol/	5% water
under constant magnetic st	irring, keeping the temperature at 30°C for 10) minutes. To ol	otain SnO ₂
organic sol, the just dissolv	ved SnCl ₂ ·2H ₂ O solution was heated at 100°	C under refluxi	ng for 6h.
First, the intermediate pr	oduct, Sn(OH) ₂ , forms by the hydrolysis	of the tin alko	oxide and
subsequently, during the re	fluxing step in aqueous-butanol mixture, Sn(0	OH)₂ transforms	into SnO ₂
nuclei which undergo a gro	wth process. After the solution was cooled t	o room temper	ature, the
SnO ₂ NCs was collected.			
Dispersive solvent			
• Butanol/ 5% water			
Characterization			
🗙 XRD			
💊 Abs spectra			
FTIR			
SEM			
TEM			
Psorpauce (n'e) =	$\begin{array}{c} 3\\ 3\\ 3\\ 3\\ 6\\ 3\\ 8\\ 4\\ 0\\ 4\\ 2\\ 0\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\$	000 Intensity (a.u.) 00 E _u 618 cm ⁻¹ A _{2u} 477 cm 1000 800 Wavenumbe	T% 600 400 r (cm ⁻¹)
Panel A: UV-Vis absorption; Pan	el B: Tauc plot of the SnO ₂ NCs; Panel C: XRD diffrators for totragonal SnO ₂ ND5 # 00 077 0452; Parel N	action pattern of S	snO_2 NCs in
400 cm ⁻¹ spectral region	נפווו זטו נפנומצטוומו אוט2 PDF # 00-077-0452; Panel D:	ATK-FTIK Spectra	in the 1500-

Panel A: TEM micrograph of synthesized SnO₂ NCs. Panel B, C: SEM micrographs at different magnification of SnO₂ NC film.

SnO₂ Eg: 4.10 eV

Biblio

Chen, C.; Jiang, Y.; Juo, J.; Wu, X.; Zhang, W.; Wu, S.; Gao, X.; Hu, X.; Wang, Q.; Zhou, G.; Chen, Y.; Liu, J-M.; Kempa, K.; Gao, J., Solvent-Assisted Low-Temperature Crystallization of SnO₂ Electron-Transfer Layer for High-Efficiency Planar Perovskite Solar Cells, Adv. Funct. Mater. 2019, 1900557. https://doi.org/10.1002/adfm.201900557

9 TiO₂

Mesoporous TiO ₂ Nanoparticles					
Reagents	MW (g/mol)		M(mol/L)	V(mL)	
TiOSO4	193.93		2.15	50	
NH ₄ HCO ₃	79.056		2.00	76	
Grams for reactions batch	1			1	
5 g					
The synthesis of TiO ₂ nat	noparticles (NPs) invo	olves TiOSO4 as cost effecti	ve Ti ⁴⁺ precurs	sor and	
exploits a precipitation m	ethod in alkaline solu	ution by dropwise addition o	of the TiOSO ₄ s	olution	
to NH4HCO3 (Figure 3A) ເ	Inder constant magn	etic stirring. Upon mixing, T	OSO₄ suddenly	/ reacts	
promoting the formation	promoting the formation and precipitation of Ti-hydroxide species resulting in a coalescence of				
the reaction mixture the	at turn in a milky s	lurry at the end of the re	action. The ol	otained	
nanocrystals were collect	ed by centrifugation	at 3000 rpm. The collected	paste was rep	eatedly	
washed by subsequent of	cycles of dispersion i	n water and centrifugation	The obtained	d white	
precipitate was thermally	treated at 110°C in o	ven for 16 hours (h)			
Good dispersive solvent					
Isopropanol					
Butanol					
Characterization					
💊 XRD					
& Abs spectra					
👌 Diffuse reflectance	Diffuse reflectance spectroscopy				
SEM					
TEM					
Specific surface ar	ea (BET)				

10 WO₃

WO₃ Nanoparticles by Sol Gel – Orthorhombic phase

Reagents		MW	M(mol/L)	V(mL)
			(- ()
Sodium	tungstate	329.85	0,1	200
	Ū		,	
dihydrate				
anyarace				
нсі		36 458	12 18	17
			12.10	±.,

Grams for reactions batch

1.7 gr

Nanoparticles of orthorhombic WO3 (WO3_o) have been synthesized through a sol gel process. For synthesis, 3.3g of sodium tungstate dihydrate (Na₂WO₄×2H₂O) are dissolved in 200 ml of deionized water; then, 1.7mL of HCl 37% w/w (12.18 M) are added dropwise. The solution is stirred for 24 h at 50°C, after which the yellow precipitate is washed by 4 cycles with deionized water. The washed precipitate is transferred to an oven at a temperature of 70°C for 16 hours to obtain a yellow powder (WO3_o). The product is then calcined at 450°C for 2 hours (WO3_oC) in air.

Good dispersive solvents

- Isopropanol
- Butanol

Characterization

- XRD
 - Abs spectra
- Diffuse reflectance spectroscopy
- o SEM
- TEM
- Specific surface area (BET)

WO_3 Nanoparticles by Sol Gel – Orthorhombic &

hexagonal phase

Reagents	MW	M(mol/L)	V(mL)	
Sodium tungstata	220.95	0.1	200	
	523.65	0,1	200	
dinydrate				
HCI	36,458	12.18	2.1	
Grams for reactions batch	1			
1.8 gr				
Nanoparticles of mixed	80% orthorhombic – 20% hexagonal WO3 (WO	03_(o+h)) hav	e been	
synthesized using the sam	ne procedure described for WO3_o sample. The or	nly difference o	consists	
in the amount of HCl 37%	w/w added to the tungsten salt precursor, that is	now of 2.1mL	instead	
1.7mL. The reaction time	e and temperature are the same and the precip	itate is collect	ed and	
washed in the same way.	Also, this sample is calcinated at 450°C for 2h (W	O3_(o+h)).		
Good dispersive solvent				
 Isopropanol 				
Butanol				
Characterization				
👌 XRD				
🔪 Abs spectra				
V Diffuse reflectance spectroscopy				
○ SEM				
TEM				
 Specific surface ar 	ea (BET)			

11 Composito TiO₂/WO₃

TiO ₂ /WO ₃ Nano-heterostructures					
Reagents	MW	M(mol/L)	V(mL)		
Sodium tungstate	329.85	0,05	100		
dihydrate					
HCI	36,458	2	10		
TiO ₂ _m	presyntesized		5gr		
Grams for reactions batch	ו	Ι			
6 g					
Nanostructure TiO ₂ /WO ₃	was synthesized using sol gel approach. 1.6 g of	sodium tu	ngstate		
dihydrate was dissolved	in 100 ml of deionized water and 5 g of prev	iously syntl	nesized		
mesoporous TiO ₂ ; then, H	HCI (2 M) was added dropwise until a pH value of 1.5	5 was reache	ed. The		
solution was stirred for	1 h, after which the impurities were removed by w	ashing cycle	es with		
deionized water and etha	anol three times. The washed precipitate was transfe	erred to an o	oven at		
a temperature of 70°C fo	r 16 hours to obtain a yellow powder (TiO ₂ /WO3).				
Good dispersive solvents					
 Isopropanol 					
Butanol					
Characterization					
o XRD					
💊 Abs spectra					
Diffuse reflectance spectroscopy					
SEM	SEM				
💊 TEM					
Spacific surface ar	rea (BET)				

12 MnO₂

[MnO₂] Obtained from industrial wastes

Chemical Formula: MnO₂ Molecular Weight: 86.94 g/mol

SUMMARY	
XRD	\checkmark
Raman	\checkmark
FTIR-ATR	\checkmark
TGA	\checkmark
XPS	\checkmark
BET analysis	\checkmark
Electrochemical characterization	\checkmark

SYNTHESIS					
Reducing agents	MW (g/mol)	d (g/mL)	mol / eq	m (mg)	V (mL)
K ₂ MnO ₄	197,132	2.78	≈ 0.1 M		100 mL solution
H ₂ O ₂ (30%)	34.016	1.11- 1.12		9 g (H ₂ O ₂ solution, 30% w/w in H ₂ O); ≈3 g H ₂ O ₂	≈ 8 mL (H ₂ O ₂ solution, 30% w/w in H ₂ O)

Procedure: Alkaline fusion with KOH was used to extract manganese as K_2MnO_4 from Mn-based industrial waste. The procedure was carried out to separate iron from manganese in the residue. Alkaline fusion was performed on a 10 g of industrial residue sample (KOH concentration: 20 g in 40 mL deionized water) at 280°C. The extraction was repeated three times (35 min each) and water (10 mL) was added in the second and third step of the cycle. The resulting solid was leached with a 1 M KOH solution to attain an iron-free solution containing manganate, aluminate, and silicate. The potassium manganate solution (approximately 0.1 M, measured by UV-Vis spectroscopy) was reduced through H_2O_2 (30% w/w in H_2O) leading to a brownish MnO₂ precipitate.

Purification

The precipitate was filtered and washed with a diluted KOH solution and deionized water up to neutrality. Purification procedure involved no further steps. The solid was dried overnight in an oven at 110 °C.

Yield: about 60% of manganese was recovered from Mn-based industrial waste (based on gravimetric, quantitative precipitation of BaMnO₄). About 2 g of δ -MnO₂ are produced from 10 g of industrial waste.

Bibliography

1. R.A. da Rocha, C.L. Quintanilha, T.V. Lanxin et al., Production of potassium manganate and barium manganate from spent zinc–MnO₂ dry cells via fusion with potassium hydroxide, *J. Power Sources* **268** (2014) 831.

Report IEMAP D4.20

- 2. B.A.M. Figueria, R.S. Angélica, M.L. da Costa et al., Conversion of different Brazilian manganese ores and residues into birnessite-like phyllomanganate, *Appl. Clay Sci.* **86** (2013) 54.
- 3. Y. Ma, J. Luo, S. Suib, Syntheses of birnessites using alcohols as reducing reagents: Effects of synthesis parameters on the formation of birnessites, *Chem. Mater.* **11** (1999) 1972.
- 4. E. Narita, T. Okabe, The formation and some properties of hydrous manganese (IV) oxide, *Bull. Chem. Soc. Jpn.* **53** (1980) 525.

CHARACTERIZATION

XRD

The X-ray diffraction (XRD) patterns were collected with an X-Pert (Panalytical) diffractometer in the 10-90° 2θ range.

The compound turned out to be a poorly crystalline form of δ -MnO₂. Therefore, the synthesized material is a non-stoichiometric, quasi-amorphous, hydrated manganese oxide possessing a "birnessite-like" (i.e., layered) structure. Thus, the prepared material can be considered as a potassium "manganite". Manganites should be regarded as a hydrated (generally non-crystalline), salt-like combination of manganese dioxide and the cation of the base forming metal (general formula: A_xMnO_{2±6}·yH₂O, where A is a base metal cation). Manganites have been obtained over the years by reducing permanganates (usually KMnO₄) in alkaline aqueous solutions with practically any oxidable material such as H₂O₂, alcohols, sugars. An industrial relevant manganite prepared from an industrial by-product/waste, similar to the present material, is "permanox". Such an oxide stems from the industrial synthesis of saccharine by means of potassium permanganate and is a δ -MnO₂ containing approximately 79% MnO₂, 5-18% water and 4-10% potassium as KOH. Before being phased out because of electrolytic manganese dioxide introduction permanox was a standard depolarizer for alkaline and zinc-carbon batteries.

Bibliography

- 1. D. Othmer, R.E. Kirk-Othmer, Encyclopedia of Chemical Technology 15 (2004) 500.
- 2. A.H. Reidies Ullmann's, Encyclopedia of Industrial Chemistry 16 (2000) 123.
- 3. P. Strobel, H. M. Helsa, Extended X-ray absorption fine structure study of potassium and caesium phyllomanganates, *J. Mater. Chem.* **3** (1993) 77.
- 4. K. J. Euler, H. M. Helsa, Electrical characteristics of a highly hydrated battery grade manganese dioxide powder, *J. Power Sources* **4** (1979) 77.

Raman

The Raman spectra of MnO_2 powder were recorded with a Renishaw micro-Raman 1000 system exciting at 632.8 nm (HeNe laser) from 100.00 to 3200.00 cm⁻¹ (a) and from 100.00 - 1000.00 cm⁻¹ (b) at RT.

(*) 578 cm⁻¹: stretching vibration $v_3(Mn - O)$ in the basal plane of $[MnO_6]$ sheets; (+) 637 cm⁻¹: symmetric stretching vibration $v_2(Mn - O)$ of MnO_6 groups.

Bibliography

1. C. Julien, M. Massot, R. Baddour-Hadjean et al., Raman spectra of birnessite manganese dioxides, *Solid State Ion.* **159** (2003) 345.

ATR-FTIR

The Attenuated Total Reflectance Fourier Transform (ATR-FTIR) measurements were performed with a N_2 purged Bruker Vertex 70 interferometer using a single reflection Platinum-ATR accessory (diamond crystal), a DLaTGS detector and a KBr beamsplitter. The spectra were recorded from 4000 to 370 cm⁻¹ with 4 cm⁻¹ resolution at RT. The ATR-FTIR spectra correction was carried out.

 3396 cm^{-1} : O-H stretching vibrational mode of adsorbed water by the MnO₂.

1635 cm⁻¹: bending mode of hydroxyl groups.

745, 479, 410 cm⁻¹: vibration modes of Mn-O, Mn-O-Mn, and O-Mn-O bonds.

Bibliography

1. P. Yadav, A. Bhaduri, Chemically synthesized manganese oxide nanorods for effectual organic dye removal and energy storage application, *Mater. Chem. Phys.* **299** (2023) 127495.

TGA

The thermogravimetric analysis (TGA) was carried out by means of SDT Q600 apparatus from 30°C up to 1500 °C at a scan rate of 10° C/min under N₂ flow and in air.

The weight loss up to 250°C (11.52% in N₂ and 10.26% in air) is due to the removal of physically adsorbed, crystalline water, hydroxyl groups, and of other adsorbed species from the K-birnessite structure, in agreement with ATR-FTIR and XPS results. The smaller weight loss up to 500°C corresponds to the removal of residual water molecules in the interlayer space in order to accomplish the phase transition of layered δ -MnO₂ to α -MnO₂ with a tunnel-like crystal structure [1]. The decomposition of α -MnO₂ to Mn₂O₃ and Mn₃O₄ occurs up to 800°C and 1300°C, respectively [2-4]. The weight loss occurring above 1300°C to 1500°C is presumably related to the formation of MnO [5].

	100	N2 air			
%	90-		· · · · · · · · · · · · · · · · · · ·		-
weight /	80-				
	700	250	500 750	1000 1250) 1500
			T∕°C		
		T start	T stop	Weight	loss (%)
		(°C)	(°C)	in N ₂	in air
		30	250	11.52	10.26
		250	500	2.78	2.076
		30	500	14.30	12.33
		500	800	3.00	-0.33
		500	950	4.35	3.735
		650	850	3.05	0.1302
		800	950	1.35	4.065
		850	1215	4.29	6.931
		950	1015	0.64	0.4889
		950	1100	2.00	1.345
		950	1300	3.93	4.572
		950	1390	5.65	5.283
		1215	1500	5.58	4.38
		1300	1500	5.19	2.761
_		1390	1500	3.47	2.052
	Tot	30	1500	27.77	23.40
	•				

Bibliography

- 1. B.A.M. Figueira, R.S. Angélica, M.L. da Costa et al., Appl. Clay Sci. 86 (2013) 54.
- 2. G. Sun, C. Jia, J. Zhang, et al. Core-shell structure $\text{LiNi}_{1/3}\text{Mn}_{1/3}\text{Co}_{1/3}\text{O}_2$ @ ultrathin δ -MnO₂ nanoflakes cathode material with high electrochemical performance for lithium-ion batteries, *lonics* **25** (2019) 5249.
- 3. Y. Munaiah, B. G. S. Raj, T. P. Kumar, Facile synthesis of hollow sphere amorphous MnO₂: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior, *J. Mater. Chem. A* **1** (2013) 4300.

- 4. J. A. Lee, C. E. Newnham, F. L. Tye, Energetics of water desorption from a γ-manganese dioxide, *J. Colloid Interface Sci.* **42** (1973) 372.
- 5. D. M. Tinsley, J. H. Sharp, Thermal analysis of manganese dioxide in controlled atmospheres, *J. Therm. Anal.* **3** (1971) 43.

XPS

The X-Ray Photoelectron Spectroscopy (XPS) experiments were carried out by an ESCALAB 250 Xi, equipped with a monochromatic X-ray source (Al K_{α} – 1486.6 eV), and six channeltrons detection system. The spectra were acquired operating at 50 eV pass energy (CAE), while the binding energy (BE) scale was aligned using an electron flux at low energy (flood gun).

Name	Peak BE	FWHM eV	Area (P) CPS.eV	Atomic %	Assignment
C1s - 1	285.0	2.45	72608.65	26.4	Aliphatic carbon
C1s - 2	287.6	2.45	4130.79	1.5	C = 0
К2р3	293.1	2.10	70739.51	9.8	K(+1)
Mn2p3 - 1	642.8	3.03	332929.56	10.0	MnO ₂
Mn2p3 - 2	645.1	3.03	70687.70	10.0	MnO ₂ – satellite peak
O1s - 1	530.3	2.09	271687.73	34.4	MnO ₂
O1s - 2	532.2	2.09	68514.88	8.7	C = 0
O1s - 3	534.1	2.09	21142.22	2.7	Adsorbed water

SEM

SEM images were collected with a JEOL JSM-6300 scanning electron microscope equipped with a fieldemission electron source. The samples were coated with gold on JEOL JFC-1600 auto fine coater.

The powder has cauliflower-like grains that in turn are composed of almost hierarchical sub-micrometric (about 500-600 nm) particles.

BET ANALYSIS

The N_2 adsorption/desorption isotherms were carried out at 77 K by means of a 3-Flex 3500 analyzer (Micromeritics, Norcross, GA, USA).

13 Fotoelettrodo di TiO₂ sensibilizzato con il colorante **N3**

PHOTO-ELECTRODE BASED ON TiO₂ SENSITIZED WITH N3 DYE

X
X
×
\mathbf{X}
XXX

TiO2 FILM DEPOSITION AND SENSITIZATION

Reagents

Substrate: Fluorine doped tin oxide coated glass (FTO, Sigma Aldrich, surface resistivity 7 Ω /sq.) with dimension of 2.5x2.5 cm².

Screen printing TiO_2 -based ink 18NR-T (Greatcell Solar Materials), with viscosity between 40-55 Pa*s.

Dye N3 (cis-Bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II), Sigma Aldrich) with chemical formula $C_{26}H_{16}N_6O_8RuS_2$ 0.3 mM in Absolute Ethanol.

Procedure

Thin film based on TiO₂ was prepared by semi-automatic screen-printed machine AUREL 900 (Aurel Automation S.p.A., Italia) with speed of 90 mm/s and 3 depositions. A thickness of 11.84 μ m and active area of 0.25 cm² were achieved. Between each deposition a drying treatment of 80°C in IR oven was used. Finally, a thermal treatment at 500°C for 30' was done to consolidate the film. The as obtained film was sensitized overnight in 0.3 mM N3 dye solution and the excess of dye was removed by absolute ethanol.

CHARACTERIZATION

SEM

SEM images were collected with a ZEISS SIGMA, Carl Zeiss Microscopy GmbH scanning electron microscope equipped with a field-emission electron source.

OPTICAL PROPERTIES

Transmittance spectra

Acquire in the range between 350 and 800 nm with an integrating sphere.

PHOTO-ELECTROCHEMISTRY

Cronoamperometry in a photoelectrochemical cell with working electrode: FTO+film; counterelectrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.2 M in H₂O MQ. Potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Electrochemical Impedance Spectroscopy in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.2 M in H₂O MQ. Frequency range between $1x10^5$ Hz e 0.05 Hz with signal amplitude of 10 mV and potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Photo-electrochemical parameters

- Photo-current equal to 0.6 mA cm⁻².
- Electrical resistance of 118 Ω.
- Charge transfer resistance electrode/electrolyte interface under illumination equal to $8.6x10^4 \Omega$.

14 Fotoelettrodo di TiO₂ sensibilizzato con il colorante **AD418**

PHOTO-ELECTRODE BASED ON TiO₂ SENSITIZED WITH AD418 DYE

SUMMARY	
SEM	
Optical properties	X
Electrochemistry	\mathbf{X}
Photo-electrochemistry	X

TiO2 FILM DEPOSITION AND SENSITIZATION

Reagents

Substrate: Fluorine doped tin oxide coated glass (FTO, Sigma Aldrich, surface resistivity 7 Ω /sq.) with dimension of 2.5x2.5 cm².

Screen printing TiO₂-based ink 18NR-T (Greatcell Solar Materials), with viscosity between 40-55 Pa^*s .

Dye AD418 (chemical formula $C_{43}H_{44}N_2O_4S_2$) 0.3 mM in ethanol:THF.

Procedure

Thin film based on TiO₂ was prepared by semi-automatic screen-printed machine AUREL 900 (Aurel Automation S.p.A., Italia) with speed of 90 mm/s and 3 depositions. A thickness of 11.84 μ m and active area of 0.25 cm² were achieved. Between each deposition a drying treatment of 80°C in IR oven was used. Finally, a thermal treatment at 500°C for 30' was done to consolidate the film. The as obtained film was sensitized overnight in 0.3 mM AD418 dye solution and the excess of dye was removed by absolute ethanol.

CHARACTERIZATION

SEM

SEM images were collected with a ZEISS SIGMA, Carl Zeiss Microscopy GmbH scanning electron microscope equipped with a field-emission electron source.

OPTICAL PROPERTIES

Transmittance spectra

Acquire in the range between 400 and 900 nm with an integrating sphere.

PHOTO-ELECTROCHEMISTRY

Cronoamperometry in a photoelectrochemical cell with working electrode: FTO+film; counterelectrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.2 M in H₂O MQ. Potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m^{-2} as irradiance (calibrated with a reference cell).

Electrochemical Impedance Spectroscopy in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.2 M in H₂O MQ. Frequency range between $1x10^5$ Hz e 0.05 Hz with signal amplitude of 10 mV and potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Photo-electrochemical parameters

- Photo-current equal to 0.019 mA cm⁻².
- Electrical resistance of 116 Ω.
- Charge transfer resistance electrode/electrolyte interface under illumination equal to $6.67 \times 10^4 \,\Omega$.

15 Fotoelettrodo di TiO₂ sensibilizzato con il colorante **TTZ5**

PHOTO-ELECTRODE BASED ON TIO₂ SENSITIZED WITH TTZ5 DYE

SUMMARY	
SEM	
Optical properties	\mathbf{X}
Electrochemistry	\boxtimes
Photo-electrochemistry	

TiO2 FILM DEPOSITION AND SENSITIZATION

Reagents

Substrate: Fluorine doped tin oxide coated glass (FTO, Sigma Aldrich, surface resistivity 7 Ω /sq.) with dimension of 2.5x2.5 cm².

Screen printing TiO₂-based ink 18NR-T (Greatcell Solar Materials), with viscosity between 40-55 Pa*s. Dye TTZ5 (molecular formula $C_{76}H_{94}N_4O_6S_7$) 0.3 mM in ethanol:THF.

Procedure

Thin film based on TiO_2 was prepared by semi-automatic screen-printed machine AUREL 900 (Aurel Automation S.p.A., Italia) with speed of 90 mm/s and 3 depositions. A thickness of 11.84 μ m and active area of 0.25 cm² were achieved. Between each deposition a drying treatment of 80°C in IR oven was used. Finally, a thermal treatment at 500°C for 30' was done to consolidate the film. The as obtained film was sensitized overnight in 0.3 mM TTZ5 dye solution and the excess of dye was removed by absolute ethanol.

CHARACTERIZATION

SEM

SEM images were collected with a ZEISS SIGMA, Carl Zeiss Microscopy GmbH scanning electron microscope equipped with a field-emission electron source.

OPTICAL PROPERTIES

Transmittance spectra

Acquire in the range between 400 and 900 nm with an integrating sphere.

Cronoamperometry in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.2 M in H₂O MQ. Potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Electrochemical Impedance Spectroscopy in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: $LiClO_4 0.2 M$ in $H_2O MQ$. Frequency range between $1x10^5$ Hz e 0.05 Hz with signal amplitude of 10 mV and potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Ω.

16 Fotoelettrodo di TiO₂ sensibilizzato con il colorante **TTZ9**

PHOTO-ELECTRODE BASED ON TiO₂ SENSITIZED WITH TTZ9 DYE

SUMMARY			
SEM	\times		
Optical properties	\boxtimes		
Electrochemistry	X		
Photo-electrochemistry	\boxtimes		

TiO2 FILM DEPOSITION AND SENSITIZATION

Reagents

Substrate: Fluorine doped tin oxide coated glass (FTO, Sigma Aldrich, surface resistivity 7 Ω /sq.) with dimension of 2.5x2.5 cm².

Screen printing TiO₂-based ink 18NR-T (Greatcell Solar Materials), with viscosity between 40-55 Pa*s. Dye TTZ9 (molecular formula $C_{82}H_{96}N_6O_6S_8$) 0.3 mM in ethanol:THF.

Procedure

Thin film based on TiO_2 was prepared by semi-automatic screen-printed machine AUREL 900 (Aurel Automation S.p.A., Italia) with speed of 90 mm/s and 3 depositions. A thickness of 11.84 μ m and active area of 0.25 cm² were achieved. Between each deposition a drying treatment of 80°C in IR oven was used. Finally, a thermal treatment at 500°C for 30' was done to consolidate the film. The as obtained film was sensitized overnight in 0.3 mM TTZ9 dye solution and the excess of dye was removed by absolute ethanol.

SEM

SEM images were collected with a ZEISS SIGMA, Carl Zeiss Microscopy GmbH scanning electron microscope equipped with a field-emission electron source.

OPTICAL PROPERTIES

Transmittance spectra

Acquire in the range between 400 and 900 nm with an integrating sphere.

Cronoamperometry in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.2 M in H₂O MQ. Potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Electrochemical Impedance Spectroscopy in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: $LiClO_4 0.2 M$ in $H_2O MQ$. Frequency range between $1x10^5$ Hz e 0.05 Hz with signal amplitude of 10 mV and potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

- Photo-current equal to 0.0026 mA cm⁻².
 - Electrical resistance of 273 Ω.
 - Charge transfer resistance electrode/electrolyte interface under illumination equal to $1.07 \times 10^6 \Omega$.

17 Fotoelettrodo di TiO₂ sensibilizzato con il colorante **BTD-DTP1**

PHOTO-ELECTRODE BASED ON TiO₂ SENSITIZED WITH BTD-DTP1 DYE

SUMMARY		
SEM	X	
Optical properties	×	
Electrochemistry	X	
Photo-electrochemistry		

TiO2 FILM DEPOSITION AND SENSITIZATION

Reagents

Substrate: Fluorine doped tin oxide coated glass (FTO, Sigma Aldrich, surface resistivity 7 Ω /sq.) with dimension of 2.5x2.5 cm².

Screen printing TiO₂-based ink 18NR-T (Greatcell Solar Materials), with viscosity between 40-55 Pa*s. Dye BTD-DTP1 (molecular formula $C_{42}H_{33}N_5O_2S_3$) 0.3 mM in ethanol:THF.

Procedure

Thin film based on TiO_2 was prepared by semi-automatic screen-printed machine AUREL 900 (Aurel Automation S.p.A., Italia) with speed of 90 mm/s and 3 depositions. A thickness of 11.84 μ m and active area of 0.25 cm² were achieved. Between each deposition a drying treatment of 80°C in IR oven was used. Finally, a thermal treatment at 500°C for 30' was done to consolidate the film. The as obtained film was sensitized overnight in 0.3 mM BTD-DTP1 dye solution and the excess of dye was removed by absolute ethanol.

SEM

SEM images were collected with a ZEISS SIGMA, Carl Zeiss Microscopy GmbH scanning electron microscope equipped with a field-emission electron source.

OPTICAL PROPERTIES

Transmittance spectra

Acquire in the range between 400 and 900 nm with an integrating sphere.

Cronoamperometry in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.2 M in H₂O MQ. Potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Electrochemical Impedance Spectroscopy in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: $LiClO_4 0.2 M$ in $H_2O MQ$. Frequency range between $1x10^5$ Hz e 0.05 Hz with signal amplitude of 10 mV and potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Ω.

18 Fotoelettrodo di TiO₂ sensibilizzato con il colorante **BTD-DTP2**

PHOTO-ELECTRODE BASED ON TiO₂ SENSITIZED WITH BTD-DTP2 DYE

SUMMARY		
SEM	X	
Optical properties	X	
Electrochemistry	X	
Photo-electrochemistry	X	

TiO2 FILM DEPOSITION AND SENSITIZATION

Reagents

Substrate: Fluorine doped tin oxide coated glass (FTO, Sigma Aldrich, surface resistivity 7 Ω /sq.) with dimension of 2.5x2.5 cm².

Screen printing TiO₂-based ink 18NR-T (Greatcell Solar Materials), with viscosity between 40-55 Pa*s. Dye BTD-DTP2 (molecular formula $C_{64}H_{61}N_5O_4S_3$) 0.3 mM in ethanol:THF.

Procedure

Thin film based on TiO_2 was prepared by semi-automatic screen-printed machine AUREL 900 (Aurel Automation S.p.A., Italia) with speed of 90 mm/s and 3 depositions. A thickness of 11.84 μ m and active area of 0.25 cm² were achieved. Between each deposition a drying treatment of 80°C in IR oven was used. Finally, a thermal treatment at 500°C for 30' was done to consolidate the film. The as obtained film was sensitized overnight in 0.3 mM BTD-DTP2 dye solution and the excess of dye was removed by absolute ethanol.

SEM

SEM images were collected with a ZEISS SIGMA, Carl Zeiss Microscopy GmbH scanning electron microscope equipped with a field-emission electron source.

OPTICAL PROPERTIES

Transmittance spectra

Acquire in the range between 400 and 900 nm with an integrating sphere.

Cronoamperometry in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.2 M in H₂O MQ. Potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Electrochemical Impedance Spectroscopy in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: $LiClO_4 0.2 M$ in $H_2O MQ$. Frequency range between $1x10^5$ Hz e 0.05 Hz with signal amplitude of 10 mV and potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

 Charge transfer resistance electrode/electrolyte interface under illumination equal to 2.61 x10⁵ Ω.

19 Fotoelettrodo di TiO₂ sensibilizzato con il colorante **BTD-DTP3**

PHOTO-ELECTRODE BASED ON TiO₂ SENSITIZED WITH BTD-DTP3 DYE

SUMMARY		
SEM	X	
Optical properties	×	
Electrochemistry	X	
Photo-electrochemistry	\boxtimes	

TiO2 FILM DEPOSITION AND SENSITIZATION

Reagents

Substrate: Fluorine doped tin oxide coated glass (FTO, Sigma Aldrich, surface resistivity 7 Ω /sq.) with dimension of 2.5x2.5 cm².

Screen printing TiO₂-based ink 18NR-T (Greatcell Solar Materials), with viscosity between 40-55 Pa*s. Dye BTD-DTP3 (molecular formula $C_{70}H_{65}N_5O_4S_3$) 0.3 mM in ethanol:THF.

Procedure

Thin film based on TiO_2 was prepared by semi-automatic screen-printed machine AUREL 900 (Aurel Automation S.p.A., Italia) with speed of 90 mm/s and 3 depositions. A thickness of 11.84 μ m and active area of 0.25 cm² were achieved. Between each deposition a drying treatment of 80°C in IR oven was used. Finally, a thermal treatment at 500°C for 30' was done to consolidate the film. The as obtained film was sensitized overnight in 0.3 mM BTD-DTP3 dye solution and the excess of dye was removed by absolute ethanol.

SEM

SEM images were collected with a ZEISS SIGMA, Carl Zeiss Microscopy GmbH scanning electron microscope equipped with a field-emission electron source.

OPTICAL PROPERTIES

Transmittance spectra

Acquire in the range between 400 and 900 nm with an integrating sphere.

Cronoamperometry in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.2 M in H₂O MQ. Potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Electrochemical Impedance Spectroscopy in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: $LiClO_4 0.2 M$ in $H_2O MQ$. Frequency range between $1x10^5$ Hz e 0.05 Hz with signal amplitude of 10 mV and potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

- Electrical resistance of 143 Ω.
- Charge transfer resistance electrode/electrolyte interface under illumination equal to 6.13 x10⁵

20 Fotoelettrodo ricaricabile con TiO₂/N3/GO

PHOTO-RECHARGEABLE ELECTRODE BASED ON TIO₂ SENSITIZED WITH N3 DYE AND GRAPHENE OXIDE

SUMMARY

SEM	X
Optical properties	X
Electrochemistry	X
Photo-electrochemistry	X
Photo-rechargeable tests	\boxtimes

TiO2 FILM DEPOSITION AND SENSITIZATION

Reagents

Substrate: Fluorine doped tin oxide coated glass (FTO, Sigma Aldrich, surface resistivity 7 Ω /sq.) with dimension of 2.5x2.5 cm².

Screen printing TiO₂-based ink 18NR-T (Greatcell Solar Materials), with viscosity between 40-55 Pa*s.

Dye N3 (cis-Bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II), Sigma Aldrich) 0.3 mM in Absolute Ethanol.

Graphene oxide (GO, 4 mg/mL in water, Sigma Aldrich), Nafion (Nafion [®] 5 wt % in alchol and water)

Procedure

Thin film based on TiO_2 was prepared by semi-automatic screen-printed machine AUREL 900 (Aurel Automation S.p.A., Italia) with speed of 90 mm/s and 3 depositions. A thickness of 11.84 μ m and active area of 0.25 cm² were achieved. Between each deposition a drying treatment of 80°C in IR oven was used. Finally, a thermal treatment at 500°C for 30' was done to consolidate the film. The as obtained film was sensitized overnight in 0.3 mM N3 dye solution and the excess of dye was removed by absolute ethanol. On top of this film, a graphene oxide-based ink was deposited by drop-by-drop deposition (150 μ L) and dried overnight. In particular, GO 83% vol. 17 % vol. Nafion composition was used, and the final amount of ink deposited was 0.0024 g.

SEM

SEM images were collected with a ZEISS SIGMA, Carl Zeiss Microscopy GmbH scanning electron microscope equipped with a field-emission electron source.

A typical graphene oxide microstructure was observed on TiO₂ sensitized film.

OPTICAL PROPERTIES

Transmittance spectra

Acquire in the range between 350 and 1000 nm with an integrating sphere.

Optical parameters

Ability to harvest light in the Visible region. Transparency at 700 nm of 43%.

Cyclic Voltammetry in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Potential applied between 0.8 V and 0 V vs Ag/AgCl and scan rate of 10, 50, 100 mV sec⁻¹. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Eectrochemical Impedance Spectroscopy in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Frequency range between $1x10^5$ Hz e 0.01 Hz with signal amplitude of 10 mV and potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Galvanostatic charge-discharge tests in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Potential range applied between 0V and 0.8 V vs Ag/AgCl with current density of 0.12 A g⁻¹. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell). 0.6 ^ootential (V) vs Ag/AgCI 0.5 $I = 0.12 \text{ A g}^{-1}$ 0.4 dark 0.3 ill 0.2 0.1 0.0 0 2 4 6 8 10

Photo-electrochemical parameters

- Specific capacitance under illumination 0.27 F g $^{-1}$ at 0.12 A g $^{-1}$.
- Electrical resistance under illumination of 163Ω .
- Charge transfer resistance electrode/electrolyte interface under illumination equal to 17403 Ω.

Time (s)

21 Fotoelettrodo ricaricabile con TiO₂/N3/PEDOT

PHOTO-RECHARGEABLE ELECTRODE BASED ON TIO₂ SENSITIZED WITH N3 DYE AND POLY-3,4 ETHYLENEDIOXYTHIOPHENE

SUMMARY SEM Image: Constraint of the second seco

TiO2 FILM DEPOSITION AND SENSITIZATION

Reagents

Substrate: Fluorine doped tin oxide coated glass (FTO, Sigma Aldrich, surface resistivity 7 Ω /sq.) with dimension of 2.5x2.5 cm².

Screen printing TiO₂-based ink 18NR-T (Greatcell Solar Materials), with viscosity between 40-55 Pa*s.

Dye N3 (cis-Bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II), Sigma Aldrich) 0.3 mM in Absolute Ethanol.

3,4 Ethylenedioxythiopene (EDOT, 97% Sigma Aldrich), LiClO₄ (ACS Reagent, Sigma Aldrich)

Procedure

Thin film based on TiO_2 was prepared by semi-automatic screen-printed machine AUREL 900 (Aurel Automation S.p.A., Italia) with speed of 90 mm/s and 3 depositions. A thickness of 11.84 µm and active area of 0.25 cm² were achieved. Between each deposition a drying treatment of 80°C in IR oven was used. Finally, a thermal treatment at 500°C for 30' was done to consolidate the film. The as obtained film was sensitized overnight in 0.3 mM N3 dye solution and the excess of dye was removed by absolute ethanol. On top of this film, Poly-3,4 Ethylenedioxythiopene (PEDOT) film was deposited by electro-polymerization in a three electrodes cells (working: FTO, reference: SCE, counter: platinum foil) using 3,4 Ethylenedioxythiopene 5 mM in LiClO₄ 0.5M in water MQ with applied potential equal to +1.05 V vs SCE. Controlling the amount of charge (0.1 C) the final amount of PEDOT deposited was 0.00049 g.

SEM

SEM images were collected with a ZEISS SIGMA, Carl Zeiss Microscopy GmbH scanning electron microscope equipped with a field-emission electron source.

A regular morphology with small particles was observed for PEDOT layer electro-deposited on sensitized TiO_2 film.

OPTICAL PROPERTIES

Transmittance spectra

Acquire in the range between 350 and 1000 nm with an integrating sphere.

Transparency at 700 nm of 8%.

Cyclic Voltammetry in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Potential applied between 0.8 V and 0 V vs Ag/AgCl and scan rate of 10, 50, 100 mV sec⁻¹. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Eectrochemical Impedance Spectroscopy in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Frequency range between 1×10^5 Hz e 0.01 Hz with signal amplitude of 10 mV and potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Galvanostatic charge-discharge tests in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Potential range applied between 0V and 0.8 V vs Ag/AgCl with current density of 0.12 A g⁻¹. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell). 0.8 $I = 0.2 \text{ A g}^{-1}$ Potential (V) vs Ag/AgCI dark - ill 0.6 0.4 0.2 0.0 10 15 25 5 20 30 0 Time (s) **Photo-electrochemical parameters** Specific capacitance under illumination 2.8 F g^{-1} at 0.2 A g^{-1} . • Electrical resistance under illumination of 161Ω . •

• Charge transfer resistance electrode/electrolyte interface under illumination equal to $1.1 \times 10^5 \Omega$.

22 Fotoelettrodo ricaricabile con TiO₂/AD418/PEDOT

PHOTO-RECHARGEABLE ELECTRODE BASED ON TIO₂ SENSITIZED WITH AD418 DYE AND POLY-3,4 ETHYLENEDIOXYTHIOPHENE

SUMMARY SEM Image: Constraint of the second seco

TiO2 FILM DEPOSITION AND SENSITIZATION

Reagents

Substrate: Fluorine doped tin oxide coated glass (FTO, Sigma Aldrich, surface resistivity 7 Ω /sq.) with dimension of 2.5x2.5 cm².

Screen printing TiO₂-based ink 18NR-T (Greatcell Solar Materials), with viscosity between 40-55 Pa*s. Dye AD418 (molecular formula $C_{43}H_{44}N_2O_4S_2$) 0.3 mM in Ethanol:THF.

3,4 Ethylenedioxythiopene (EDOT, 97% Sigma Aldrich), LiClO₄ (ACS Reagent, Sigma Aldrich)

Procedure

Thin film based on TiO₂ was prepared by semi-automatic screen-printed machine AUREL 900 (Aurel Automation S.p.A., Italia) with speed of 90 mm/s and 3 depositions. A thickness of 11.84 μ m and active area of 0.25 cm² were achieved. Between each deposition a drying treatment of 80°C in IR oven was used. Finally, a thermal treatment at 500°C for 30' was done to consolidate the film. The as obtained film was sensitized overnight in 0.3 mM AD418 dye solution and the excess of dye was removed by absolute ethanol. On top of this film, Poly-3,4 Ethylenedioxythiopene (PEDOT) film was deposited by electropolymerization in a three electrodes cells (working: FTO, reference: SCE, counter: platinum foil) using 3,4 Ethylenedioxythiopene 5 mM in LiClO₄ 0.5M in water MQ with applied potential equal to +1.05 V vs SCE. Controlling the amount of charge (0.1 C) the final amount of PEDOT deposited was 0.00049 g.

SEM

SEM images were collected with a ZEISS SIGMA, Carl Zeiss Microscopy GmbH scanning electron microscope equipped with a field-emission electron source.

A regular morphology with small particles was observed for PEDOT layer electro-deposited on sensitized TiO_2 film.

OPTICAL PROPERTIES

Transmittance spectra

Acquire in the range between 350 and 1000 nm with an integrating sphere.

Transparency at 700 nm of 8%.

Cyclic Voltammetry in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Potential applied between 0.8 V and 0 V vs Ag/AgCl and scan rate of 10, 50, 100 mV sec⁻¹. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Eectrochemical Impedance Spectroscopy in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Frequency range between $1x10^5$ Hz e 0.01 Hz with signal amplitude of 10 mV and potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Galvanostatic charge-discharge tests in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Potential range applied between 0V and 0.8 V vs Ag/AgCl with current density of 0.12 A g⁻¹. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

• Specific capacitance under illumination 2.83 F g⁻¹ at 0.12 A g⁻¹.

20

• Electrical resistance under illumination of 190 Ω.

0.2

0.0

• Charge transfer resistance electrode/electrolyte interface under illumination equal to 38154 Ω.

40

Time (s)

60

80

23 Fotoelettrodo ricaricabile con TiO₂/**BTD-DTP2**/PEDOT

PHOTO-RECHARGEABLE ELECTRODE BASED ON TiO₂ SENSITIZED WITH BTD-DTP2 DYE AND POLY-3,4 ETHYLENEDIOXYTHIOPHENE

SUMMARY	
SEM	X
Optical properties	imes
Electrochemistry	\boxtimes
Photo-electrochemistry	
Photo-rechargeable tests	凶

TiO2 FILM DEPOSITION AND SENSITIZATION

Reagents

Substrate: Fluorine doped tin oxide coated glass (FTO, Sigma Aldrich, surface resistivity 7 Ω /sq.) with dimension of 2.5x2.5 cm².

Screen printing TiO₂-based ink 18NR-T (Greatcell Solar Materials), with viscosity between 40-55 Pa*s. Dye BTD-DTP2 (molecular formula $C_{64}H_{61}N_5O_4S_3$) 0.3 mM in Ethanol:THF.

3,4 Ethylenedioxythiopene (EDOT, 97% Sigma Aldrich), LiClO₄ (ACS Reagent, Sigma Aldrich)

Procedure

Thin film based on TiO_2 was prepared by semi-automatic screen-printed machine AUREL 900 (Aurel Automation S.p.A., Italia) with speed of 90 mm/s and 3 depositions. A thickness of 11.84 µm and active area of 0.25 cm² were achieved. Between each deposition a drying treatment of 80°C in IR oven was used. Finally, a thermal treatment at 500°C for 30' was done to consolidate the film. The as obtained film was sensitized overnight in 0.3 mM BTD-DTP2 dye solution and the excess of dye was removed by absolute ethanol. On top of this film, Poly-3,4 Ethylenedioxythiopene (PEDOT) film was deposited by electropolymerization in a three electrodes cells (working: FTO, reference: SCE, counter: platinum foil) using 3,4 Ethylenedioxythiopene 5 mM in LiClO₄ 0.5M in water MQ with applied potential equal to +1.05 V vs SCE. Controlling the amount of charge (0.1 C) the final amount of PEDOT deposited was 0.00049 g.

SEM

SEM images were collected with a ZEISS SIGMA, Carl Zeiss Microscopy GmbH scanning electron microscope equipped with a field-emission electron source.

A regular morphology with small particles was observed for PEDOT layer electro-deposited on sensitized TiO_2 film.

OPTICAL PROPERTIES

Transmittance spectra

Acquire in the range between 350 and 1000 nm with an integrating sphere.

Cyclic Voltammetry in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Potential applied between 0.8 V and 0 V vs Ag/AgCl and scan rate of 10, 50, 100 mV sec⁻¹. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Eectrochemical Impedance Spectroscopy in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Frequency range between $1x10^5$ Hz e 0.01 Hz with signal amplitude of 10 mV and potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Galvanostatic charge-discharge tests in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Potential range applied between 0V and 0.8 V vs Ag/AgCl with current density of 0.12 A g⁻¹. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Photo-electrochemical parameters

- Specific capacitance under illumination 4.58 F g⁻¹ at 0.12 A g⁻¹.
- Electrical resistance under illumination of 183 Ω.
- Charge transfer resistance electrode/electrolyte interface under illumination equal to 119 Ω.

24 Fotoelettrodo di WO₃

PHOTO-RECHARGEABLE ELECTRODE BASED ON WO₃

SUMMARY	
SEM	X
Optical properties	×
Electrochemistry	X
Photo-electrochemistry	X
Photo-rechargeable tests	\mathbf{X}

WO₃ FILM DEPOSITION

Reagents

Substrate: Fluorine doped tin oxide coated glass (FTO, Sigma Aldrich, surface resistivity 7 Ω /sq.) with dimension of 2.5x2.5 cm².

Screen printing WO₃-based ink was developed using (active material content between 15 ed il 20 wt.%), α -terpineol and cellulose (Sigma Aldrich).

Procedure

Thin film based on WO₃ was prepared by semi-automatic screen-printed machine AUREL 900 (Aurel Automation S.p.A., Italia) with speed of 45 mm/s and 10 depositions. A thickness of 22 μ m and active area of 0.25 cm² were achieved. Between each deposition a drying treatment of 80°C in IR oven was used. Finally, a thermal treatment at 500°C for 30' was done to consolidate the film.

SEM

SEM images were collected with a ZEISS SIGMA, Carl Zeiss Microscopy GmbH scanning electron microscope equipped with a field-emission electron source.

Microstructure with aggregates covered with small WO $_3$ nanoparticles with distributed porosity with dimension in the range of few nanometres until to over 1 μ m.

OPTICAL PROPERTIES

Transmittance spectra

Acquired in the range between 350 and 1000 nm with an integrating sphere. Tauc equation was used to determine the band gap (Eg) of the film:

$$\alpha h v = A(hv - Eg)^n$$

with exponent n=2 and α determined from transmittance spectra.

PHOTO-ELECTROCHEMISTRY

Cronoamperometry in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Cyclic Voltammetry in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: $LiClO_4$ 0.1 M in H₂O MQ. Potential applied between 0.8 V and 0 V vs Ag/AgCl and scan rate of 10, 50, 100 mV sec⁻¹. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Eectrochemical Impedance Spectroscopy in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Frequency range between 1×10^5 Hz e 0.01 Hz with signal amplitude of 10 mV and potential applied equal to 0V vs Ag/AgCl. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Galvanostatic charge-discharge tests in a photoelectrochemical cell with working electrode: FTO+film; counter-electrode: platinum wire; reference electrode: aqueous Ag/AgCl (sat. KCl); electrolyte: LiClO₄ 0.1 M in H₂O MQ. Potential range applied between 0V and 0.8 V vs Ag/AgCl with current density of 0.0002 A g⁻¹. Dark and illumination conditions with 1000 W m⁻² as irradiance (calibrated with a reference cell).

Photo-electrochemical parameters

- Photo-current equal to 0.01 mA cm⁻²
- Areal capacitance under illumination 1.6 mF cm⁻² at 0.0002 A cm⁻².
- Electrical resistance under illumination of 173 Ω .
- Charge transfer resistance electrode/electrolyte interface under illumination equal to 28992 Ω.